

NOAA Assessment of the Oceansat-2 Scatteromet Seubson Soisuvarn Khalil Ahmad Zorana Jelenak Joseph Sienkiewicz Paul S. Chang

9-11 May 2011

Introduction

- NOAA has been receiving day old OSCAT data via ISRO dedicated FTP server since September 2010
- NRT OSCAT data flow from ISRO to EUMETSAT commenced in February 2011. Since then EUMETSAT has been receives 12-14 orbits per day. In March 2011 NRT OSCAT data flow began at NOAA via EUMETSAT dedicated FTP server
- **I** NOAA is currently receiving all three levels of OSCAT data: L1B, L2A and L2B
 - L2A and L2B
 - Gridded @ 50 km WVC
 - Latest data as of February 2011 was used in analysis
 - □ Near real-time received through EUMETSAT

Collocation of GDAS wind vector was done for L1B (slice) and L2A (composite) Sigma0

Signal & Noise Power

- Calculates Signal power (echo after noise subtraction) and Noise power from the following formulation
- Plot as a function of wind speed
- Signal is below noise level @ winds < 7.5 m/s in a mean!

Signal & Noise Power

OSCAT

QuikSCAT

Signal & Noise Power

OSCAT

QuikSCAT

Slice & Composite bias

L1B → L2A (NOAA)

Click to Bedit Master Peterst styles OSCAT wind

- Use QuikSCAT wind processor as a starting point
- Process OSCAT data from Level 1B
- Grid Sigma0 @ 25 km WVC (L2A)

ISRO derived WVC index (i,j) from satellite position and velocity vectors

(not currently available in routine L1B processing)

Derived WVC index (i,j) by approximation from orbital elements given in L1B attribute parameters, i.e.

- Inclination = 98.28 deg
- Semi-major axis = 7098.14 km
- **Eccentricity = 0.00113**
- Equator crossing longitude (descending node) = varied orbit-by-orbit

STD

$$\sigma^{0}_{comp} = \frac{\sum_{S} X_{S} \sigma^{0}_{S}}{\sum_{S} X_{S}}$$

We calculate standard deviation of each Sigma0 from the following formulation

$$\sigma^{0}STD = \frac{1}{N} \cdot \sqrt{\sum_{S} \left(\frac{X_{S} \sigma_{S}^{0}}{\sum_{S} X_{S}} - \sigma^{0}_{comp} \right)^{2}}$$

IOVWST Meeting, Annapolis, MD, USA

Jummary and **Conclusions** OSCAT data has been flowing to NOAA in near real-time via EUMETSAT since

March 2011

- OSCAT L1B/L2A investigation shows:
 - ☐ High wind retrievals from OSCAT would be valuable
 - Signal-to-Noise ratio is too low at low wind speeds $< \sim 7.5$ m/s
 - Sigma0 residual biases are significantly high at low wind speeds
 - Sigma0 are dependent on antenna scan position and ascending/descending orbit
- **NOAA** is developing enhanced L2A product from ISRO's L1B
 - 25 km WVC grid
 - L2A product will contain standard deviation of composite Sigma0
 - □ Is proving to be useful parameter in definition of objective function normalization during retrieval process